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Elwood Downey, WBØOEW

8274 North Sunset Ranch Loop, Tucson, AZ 85743; wb0oew@arrl.net

This generator produces any frequency 
between 500 kHz and 40 MHz with an accu-
racy approaching one part in 109, for example 
0.01 Hz at 10 MHz. It uses an Arduino Nano, 
a GPS receiver with antenna, a digital 
encoder, a small TFT LCD color display, and 
the Silicon Labs Si5351A direct digital syn-
thesizer (DDS). Together these parts cost me 
about $150. I will also share some interesting 
applications for this device.

Operation
My housing and user interface are shown 

in Figure 1. The user’s desired frequency 
appears across the top of the display. Tapping 
the screen will underline different groups of 
three digits. Rotating the encoder will change 
this group, with faster rotation changing the 
numbers even more rapidly. The next row 
reports the error measured during the previ-
ous 10 second measurement scaled to the 

Simple and Accurate Variable 
Frequency RF Signal Generator

This Generator uses an Arduino-controlled direct digital synthesizer  
stabilized with a GPS receiver, along with a hand full of parts. 

Figure 1 — Packaging and user interface. Figure 2 — An inside view shows the method of construction.
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current user frequency and includes quanti-
zation errors from loading the integral DDS 
registers. This row can also report if the GPS 
PPS (pulse per second) signal is not available 
or the reference clock is not working. The 
next row reports the approximate output 
power in dBm into 50 W. Clicking the 
encoder cycles through four power levels. 
The remainder of the display shows the cur-
rent date and time, antenna location, an all-
sky map showing the tracks of the satellites 
currently being used for the fix, the software 
version, and the best and worst satellite sig-
nal-to-noise ratio. These extra data are just 
for fun and are not used by the generator con-
trol algorithm. Note that displaying the time 
is given low priority and can be as much as 
one second late.

Construction
Figure 2 shows an inside view of my unit 

showing my method of construction. The 
modules are placed on one piece of perf 
board and wiring is point-to-point under-
neath. The display is stacked below in this 
view. The wiring diagram is shown in Figure 
3. The level shifting diodes ensure the 5 V 
Arduino is reliably triggered from the 3.3 V 
outputs from the GPS PPS and Silicon Labs 
DDS. I used the Arduino Nano but any 
Arduino should work with suitable attention 
to pin numbers. The unit can be powered with 
USB but I wanted to use my shack 13.8 V dc 
supply, so I added a USB buck converter1 
from eBay to create 5 V. For the Si5351A I 
tried both the Etherkit2 breakout with the 
temperature controlled crystal oscillator 
(TCXO) option and the Adafruit board3, 
which has no temperature control. Exposed 
on the bench, the unit with oven control was 
significantly more stable, but inside the 
enclosure I could measure no difference, so 
the final choice just depends on your packag-
ing preference. See Table 1 for a list of the 
main part numbers and current prices in US$, 
not including wires, connectors and enclo-
sure.

I did not use any third-party software 
libraries for the Si5351A, preferring to write 
code for the “bare metal” to allow me to 
develop a deeper understanding of how best 
to use this synthesizer. Similarly, I did not use 
the Adafruit GPS library but only because I 
needed just a few features so I could save pre-
cious memory by writing my own code. I did 
use the Adafruit GFX, ILI9341 and FT6206 
libraries for their TFT display and touch 
overlay panel. My source code is available on 
the www.arrl.org/qexfiles web page. You 
may also check for updates for this project at 
www.clearskyinstitute.com/ham/gps. 
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Figure 3 — Wiring diagram of the generator. 
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Table 1
Parts list not including enclosure and various wiring materials

Part	 Cost
Adafruit Ultimate GPS breakout – PID 746	 $40
Adafruit GPS Antenna External Active – PID 960	 $13
Adafruit uFL to SMA adaptor cable – PID 851	 $4
Adafruit 2.8” TFT LCD with capacitive touch – PID 2090	 $40
Adafruit Rotary encoder – PID 377	 $4.50
Either Adafruit Si5351A breakout – PID 2045	 $8
Or Etherkit Si5351A breakout with TXCO	 $16
Arduino Nano – several sources	 $22
1N4148 diode , 2, 	 $0.50
560 W ¼ W resistor, 2,	 $0.50
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Figure 4 — An example measurement sequence.

Figure 5 — Idealized path geometry between 
WBØOEW and WWV.

Theory of Operation
If the GPS receiver can receive from at 

least four satellites it produces one digital 
pulse per second (PPS). Clock 1 of the 
Si5351A is programmed to produce a fre-
quency of 5,000,000.00 Hz. This is fed to an 
Arduino counter4 whose value is captured at 
each PPS signal. These measured counts are 
used to correct the Clock 1 frequency. The 
claimed accuracy of the PPS is one part in 108 
with random jitter. This could be improved 
another factor of 10 by applying the error 
measured over 100 seconds, but I did not 

want to assume the DDS would be perfectly 
stable for this long, so instead I measure the 
error over a period of 10 seconds and apply 
one tenth of this as the correction.

The software continuously compensates 
for the DDS crystal oscillator error by mea-
suring the value of a known reference fre-
quency, REF_FREQ, being generated with 
CLK1. It then uses this correction to produce 
any frequency on CLK0 to the same relative 
accuracy.

Figure 4 shows an example measurement 
sequence. The DDS CLK1 is set to generate 
the REF_FREQ. This is connected to D5 
(T1) so it causes Timer1 to count continu-
ously from 0 to 65535 then overflow and 
repeat. Each overflow triggers an interrupt 
that increments n_overflows. Meanwhile, the 
GPS 1 PPS is connected to D8 (ICP1). Each 
falling edge copies Timer1 (TCNT1) to the 
Input Capture Register (ICR1) and triggers 
an interrupt. The first PPS interrupt after a 
measurement is started saves ICR1 in icr_0. 
After m_secs more PPS interrupts the ICR1 
is saved in icr_1. Thus the total counts during 
m_secs is the remaining Timer1 counts until 
the first overflow, plus the number of counts 

in the next full n_overflows periods, plus the 
counts until the final PPS. 

The Si5351A uses several fixed point 
configuration registers of the form a + b/c. 
Care is taken in the software to choose the 
best combination of these integral values to 
achieve a total precision of at least 30 bits or 
about one part in 109 to match the effective 
GPS precision. The desired user frequency is 
generated on Clock 0 from the same crystal 
time base so it is also accurate to the same 
precision, scaled proportional to frequency. 
The reference corrections run continuously 
in the background so the user is free to adjust 
the desired output frequency with the digital 
encoder on Clock 0 at any time. Note well 
that this DDS generates square waves, not 
sine waves. This is ideal for the control pur-
pose on Clock 1, but the Clock 0 user output 
will be rich in odd harmonics.

Entering the ARRL Frequency 
Measurement Test

I tested the project by using it for the 
ARRL Frequency Measuring Test held in 
April 2018. This test required measurement 
of frequencies in the 20, 40 and 80 m bands. 
I tied for second place in a field of 108 with a 
maximum error of 0.09 Hz. I used an Elecraft 
KX3 with SpectrumLab5 running under wine 
on an iMac with macOS 10.13.3. This is an 
exceptionally versatile and accurate audio 
measurement tool built for Windows, but I 
had no problems running it on macOS with 
wine and I have no reason to doubt it would 
run equally well under linux. The File Export 
Format dialog contained the following three-
column definitions; note the third column 
records the time in my local time zone of 
UTC‑7 hours:

# WWV eak_f(990,1010)###0.00#
# GPS eak_f(965,975) ###0.00#
# UNIX time-25200#########0.0

I did not make a direct connection 
between the generator and the receiver, I just 
used a 10-inch bare wire lying on the desk top 
near the receiver with one end attached to the 
Clock 0 output. I set the receiver to USB and 
tuned so I could hear the FMT signal at about 
500 Hz audio tone. I then adjusted the gen-
erator and the wire to produce a second tone 
at about 450 Hz with about equal intensity. I 
then recorded the audio with both frequen-
cies. Later I measured each audio tone peak 
frequency with an FFT bin size of 21 mHz. 
The frequency of the carrier was then com-
puted as the difference between the audio 
tones added to my generator frequency. To 
find each FMT frequency I applied the for-
mula,



6   QEX  September/October 2018

Figure 6 — Doppler shift and ionospheric height change over a 24–hour period. 

( )FMT GPS FMT GPSf f A A= + −  

where fFMT is the unknown FMT fre-
quency, fGPS is the frequency displayed on the 
GPS generator, AGPS is the audio frequency of 
the GPS generator reported by SpectrumLab 
peak_f(), and AFMT is the audio frequency of 
the FMT signal, reported by SpectrumLab 
peak_f()

Note that by using the difference in the 
measured audio tones this technique relies 
entirely on the GPS generator for accuracy. 
The Arduino, receiver and computer time 
bases must be stable during the test but need 
not be well calibrated.

Computing Change in Ionospheric 
Height by Measuring Doppler Shift

I tried measuring the Doppler shift of 
WWV at 5 MHz. This allowed me to calcu-
late the change in path length from their 
transmitter in Colorado to my station in 
Arizona. The distance is about 1000 km so I 
assumed the path required one ionospheric 
reflection and no ground reflections. Using 
this model I estimated the effective height of 
the ionosphere over time as follows.

The velocity, v(t), at which the source of 
an electromagnetic wave is moving with 
respect to the receiver can be computed from 
its Doppler shift as a function of time6,
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In my case, the source is not moving but the 
path length is changing because the effective 
reflection height is changed by insolation. 
For example, if the frequency is increasing, it 

means the path length is getting shorter 
because the ionization layer is getting thicker 
and the effective reflection height is getting 
lower. Integrating velocity from time 0 to 
time T lets us find the total path length 
change, Dp, in this interval as,
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This integration can be performed numer-
ically by maintaining a running sum of each 
measured frequency value with respect to the 
known reference frequency every Dt seconds. 
To convert this path length change to a 
change in height, I assumed the path simply 
follows each hypotenuse of two right trian-
gles sharing a common vertical side beneath 
the point of reflection as shown in Figure 5. 
From this geometry we have,
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then from ∂h/∂p we find the change in 
height for a given change in path length is 
approximately

4
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Combining Eqns. (2) and (4) we find the 
height change as a function of time,
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I set h to the F-layer height7 of 300 km, 
and d to1000 km for which p is1170 km. The 
measurements were taken every Dt = 5 s, and 
f0 = 5 MHz. This yields a scale factor of 292 
m s per sample.

Putting it all together we have one result 
over a 24-hour period shown in Figure 6. 
This was measured using an active receiving 
loop antenna8 connected to an RFSpace 
Cloud-IQ SDR receiver (see: rfspace.com/
RFSPACE/CloudIQ.html) read with gqrx 
(see: gqrx.com). and piped into SpectrumLab 
running under wine all on macOS 10.13.3. 
The radio was set to about 4999 kHz USB so 
the WWV carrier produced an approximately 
1 kHz audio tone. The GPS reference was set 
to 4,999,970 Hz to produce an approximately 
970 Hz audio tone. It is only the difference in 
tone frequencies that matters. SpectrumLab 
was programmed to find the peak of each of 
these two frequencies and store the differ-
ence. These were summed with perl (see: 
https://www.perl.org) and plotted with gnu-
plot  (see: www.gnuplot.info). The 
SpectrumLab output file was named wwv-
5-doppler.txt with three columns for the mea-
sured WWV and GPS reference audio 
frequencies and the local time in UNIX for-
mat. The key gnuplot commands include:

gnuplot> set xdata time

gnuplot> set timefmt “%s”

gnuplot> set format x “%H:%M”

gnuplot> set y2tics

gnuplot “< perl -n -a -e 
‘$df=$F[0]-$F[1]-30; 
$h-=292*$df/1000;

print \”$F[2] $h $df\n\”;’ 
wwv-5-doppler.txt” using 
1:3 axis x1y2

title ‘Doppler shift’, “” 
using 1:2 title ‘Height 
change‘ linewidth3

The height scale is only approximate but 
you can see some interesting trends on this 
day. The plot begins at local midnight. The 
height increased a bit more until sustaining a 
fairly steady maximum for much of the 
remainder of the night. After an interesting 
bump an hour before sunrise it dropped 
quickly then leveled off during the daytime 
hours. As sunset approached the height rose 
again quickly. The bounce back an hour later 
looks suspiciously like the mirror image of 
the bump before sunrise. It looks as if the 
remainder of the night may not be as high as 
the previous night. These plots are easy to 
make and fun to ponder. I have recorded sev-
eral days on different bands in this manner 
and all contain varied and interesting charac-
teristics.
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I hope you enjoy using this variable fre-
quency generator. Feel free to contact me if 
you have any questions.

Elwood Downey, WBØOEW, has been 
licensed continuously with the same call sign 
since 1974. He enjoys building telescope con-
trol systems and related astronomical instru-
mentation. Elwood maintains a small Amateur 
Radio web page at www.clearskyinstitute.com/
ham.

Notes
1https://www.ebay.com/itm/DC-6-5-40V-To-

5V-2A-USB-Charger-DC-DC-Step-down-
Buck-Converter-Voltmeter-Module/32178
7604751?hash=item4aec092f0f:g:0CIAA
OxygPtS4cu5.

2Etherkit Si5351 breakout board with TXCO, 
https://www.etherkit.com.

3Adafruit products, tutorials and software are 
available at https://www.adafruit.com.

4 For details on programming the counters 
see Chapter 20 in the Atmel data sheet at 
www.atmel.com/Images/Atmel-42735-

8-bit-AVR-Microcontroller-ATmega328-
328P_Datasheet.pdf.

5SpectrumLab is available as a free download 
at www.qsl.net/dl4yhf/spectra1.html. 

6https://en.wikipedia.org/wiki/Doppler_
effect. 

7This is a typical height for the F layer 
responsible for HF propagation; see https://
en.wikipedia.org/wiki/Ionosphere. 

8I used this amplifier: active-antenna.eu/
amplifier-kit, with two coplanar loops 1 m in 
diameter with a center height of about 3 m.


