
 QEX September/October 2018 3

Elwood Downey, WBØOEW

8274 North Sunset Ranch Loop, Tucson, AZ 85743; wb0oew@arrl.net

This generator produces any frequency
between 500 kHz and 40 MHz with an accu-
racy approaching one part in 109, for example
0.01 Hz at 10 MHz. It uses an Arduino Nano,
a GPS receiver with antenna, a digital
encoder, a small TFT LCD color display, and
the Silicon Labs Si5351A direct digital syn-
thesizer (DDS). Together these parts cost me
about $150. I will also share some interesting
applications for this device.

Operation
My housing and user interface are shown

in Figure 1. The user’s desired frequency
appears across the top of the display. Tapping
the screen will underline different groups of
three digits. Rotating the encoder will change
this group, with faster rotation changing the
numbers even more rapidly. The next row
reports the error measured during the previ-
ous 10 second measurement scaled to the

Simple and Accurate Variable
Frequency RF Signal Generator

This Generator uses an Arduino-controlled direct digital synthesizer
stabilized with a GPS receiver, along with a hand full of parts.

Figure 1 — Packaging and user interface. Figure 2 — An inside view shows the method of construction.

4 QEX September/October 2018

current user frequency and includes quanti-
zation errors from loading the integral DDS
registers. This row can also report if the GPS
PPS (pulse per second) signal is not available
or the reference clock is not working. The
next row reports the approximate output
power in dBm into 50 W. Clicking the
encoder cycles through four power levels.
The remainder of the display shows the cur-
rent date and time, antenna location, an all-
sky map showing the tracks of the satellites
currently being used for the fix, the software
version, and the best and worst satellite sig-
nal-to-noise ratio. These extra data are just
for fun and are not used by the generator con-
trol algorithm. Note that displaying the time
is given low priority and can be as much as
one second late.

Construction
Figure 2 shows an inside view of my unit

showing my method of construction. The
modules are placed on one piece of perf
board and wiring is point-to-point under-
neath. The display is stacked below in this
view. The wiring diagram is shown in Figure
3. The level shifting diodes ensure the 5 V
Arduino is reliably triggered from the 3.3 V
outputs from the GPS PPS and Silicon Labs
DDS. I used the Arduino Nano but any
Arduino should work with suitable attention
to pin numbers. The unit can be powered with
USB but I wanted to use my shack 13.8 V dc
supply, so I added a USB buck converter1
from eBay to create 5 V. For the Si5351A I
tried both the Etherkit2 breakout with the
temperature controlled crystal oscillator
(TCXO) option and the Adafruit board3,
which has no temperature control. Exposed
on the bench, the unit with oven control was
significantly more stable, but inside the
enclosure I could measure no difference, so
the final choice just depends on your packag-
ing preference. See Table 1 for a list of the
main part numbers and current prices in US$,
not including wires, connectors and enclo-
sure.

I did not use any third-party software
libraries for the Si5351A, preferring to write
code for the “bare metal” to allow me to
develop a deeper understanding of how best
to use this synthesizer. Similarly, I did not use
the Adafruit GPS library but only because I
needed just a few features so I could save pre-
cious memory by writing my own code. I did
use the Adafruit GFX, ILI9341 and FT6206
libraries for their TFT display and touch
overlay panel. My source code is available on
the www.arrl.org/qexfiles web page. You
may also check for updates for this project at
www.clearskyinstitute.com/ham/gps.

QX1809-Downey03

B

A

S

Encoder

C

A5

A4

D5

D9

D10

D11

D13

Arduino
Nano

Vin

GND

Vin CLK

MOSI

CS

D/C

SDA

SCLGND

TFT

5 V

5 V

5 V

D2

D3

D4

D8

D7

D6

Vin

RX

TX

GND

GPS

5 V

Ant

PPS

J8–1

SDA

SCL

5V

J7–1

GND

5 V

Etherkit

5 V

1N4148

560 Ω

560 Ω
1N4148

Figure 3 — Wiring diagram of the generator.

 QEX September/October 2018 5

Table 1
Parts list not including enclosure and various wiring materials

Part	 Cost
Adafruit Ultimate GPS breakout – PID 746	 $40
Adafruit GPS Antenna External Active – PID 960	 $13
Adafruit uFL to SMA adaptor cable – PID 851	 $4
Adafruit 2.8” TFT LCD with capacitive touch – PID 2090	 $40
Adafruit Rotary encoder – PID 377	 $4.50
Either Adafruit Si5351A breakout – PID 2045	 $8
Or Etherkit Si5351A breakout with TXCO	 $16
Arduino Nano – several sources	 $22
1N4148 diode , 2, 	 $0.50
560 W ¼ W resistor, 2,	 $0.50

QX1809-Downey04

Pulses Per Second

Ti
m

er
1

C
ou

nt
in

g
C

LK
1

up

0

0 5

65535

1 2 3 4

ic
r_

0

ic
r_

1

n_overflows = 4, m_secs = 2

(Hz)
m_secs

65536 – icr_0 + 65536 * (n_overflows – 1) + icr_1
CLK1 =

QX1809-Downey05

WB0OEW WWV

h
p/2

d/2

p/2

d/2

Figure 4 — An example measurement sequence.

Figure 5 — Idealized path geometry between
WBØOEW and WWV.

Theory of Operation
If the GPS receiver can receive from at

least four satellites it produces one digital
pulse per second (PPS). Clock 1 of the
Si5351A is programmed to produce a fre-
quency of 5,000,000.00 Hz. This is fed to an
Arduino counter4 whose value is captured at
each PPS signal. These measured counts are
used to correct the Clock 1 frequency. The
claimed accuracy of the PPS is one part in 108
with random jitter. This could be improved
another factor of 10 by applying the error
measured over 100 seconds, but I did not

want to assume the DDS would be perfectly
stable for this long, so instead I measure the
error over a period of 10 seconds and apply
one tenth of this as the correction.

The software continuously compensates
for the DDS crystal oscillator error by mea-
suring the value of a known reference fre-
quency, REF_FREQ, being generated with
CLK1. It then uses this correction to produce
any frequency on CLK0 to the same relative
accuracy.

Figure 4 shows an example measurement
sequence. The DDS CLK1 is set to generate
the REF_FREQ. This is connected to D5
(T1) so it causes Timer1 to count continu-
ously from 0 to 65535 then overflow and
repeat. Each overflow triggers an interrupt
that increments n_overflows. Meanwhile, the
GPS 1 PPS is connected to D8 (ICP1). Each
falling edge copies Timer1 (TCNT1) to the
Input Capture Register (ICR1) and triggers
an interrupt. The first PPS interrupt after a
measurement is started saves ICR1 in icr_0.
After m_secs more PPS interrupts the ICR1
is saved in icr_1. Thus the total counts during
m_secs is the remaining Timer1 counts until
the first overflow, plus the number of counts

in the next full n_overflows periods, plus the
counts until the final PPS.

The Si5351A uses several fixed point
configuration registers of the form a + b/c.
Care is taken in the software to choose the
best combination of these integral values to
achieve a total precision of at least 30 bits or
about one part in 109 to match the effective
GPS precision. The desired user frequency is
generated on Clock 0 from the same crystal
time base so it is also accurate to the same
precision, scaled proportional to frequency.
The reference corrections run continuously
in the background so the user is free to adjust
the desired output frequency with the digital
encoder on Clock 0 at any time. Note well
that this DDS generates square waves, not
sine waves. This is ideal for the control pur-
pose on Clock 1, but the Clock 0 user output
will be rich in odd harmonics.

Entering the ARRL Frequency
Measurement Test

I tested the project by using it for the
ARRL Frequency Measuring Test held in
April 2018. This test required measurement
of frequencies in the 20, 40 and 80 m bands.
I tied for second place in a field of 108 with a
maximum error of 0.09 Hz. I used an Elecraft
KX3 with SpectrumLab5 running under wine
on an iMac with macOS 10.13.3. This is an
exceptionally versatile and accurate audio
measurement tool built for Windows, but I
had no problems running it on macOS with
wine and I have no reason to doubt it would
run equally well under linux. The File Export
Format dialog contained the following three-
column definitions; note the third column
records the time in my local time zone of
UTC‑7 hours:

WWV eak_f(990,1010)###0.00#
GPS eak_f(965,975) ###0.00#
UNIX time-25200#########0.0

I did not make a direct connection
between the generator and the receiver, I just
used a 10-inch bare wire lying on the desk top
near the receiver with one end attached to the
Clock 0 output. I set the receiver to USB and
tuned so I could hear the FMT signal at about
500 Hz audio tone. I then adjusted the gen-
erator and the wire to produce a second tone
at about 450 Hz with about equal intensity. I
then recorded the audio with both frequen-
cies. Later I measured each audio tone peak
frequency with an FFT bin size of 21 mHz.
The frequency of the carrier was then com-
puted as the difference between the audio
tones added to my generator frequency. To
find each FMT frequency I applied the for-
mula,

6 QEX September/October 2018

Figure 6 — Doppler shift and ionospheric height change over a 24–hour period.

()FMT GPS FMT GPSf f A A= + −

where fFMT is the unknown FMT fre-
quency, fGPS is the frequency displayed on the
GPS generator, AGPS is the audio frequency of
the GPS generator reported by SpectrumLab
peak_f(), and AFMT is the audio frequency of
the FMT signal, reported by SpectrumLab
peak_f()

Note that by using the difference in the
measured audio tones this technique relies
entirely on the GPS generator for accuracy.
The Arduino, receiver and computer time
bases must be stable during the test but need
not be well calibrated.

Computing Change in Ionospheric
Height by Measuring Doppler Shift

I tried measuring the Doppler shift of
WWV at 5 MHz. This allowed me to calcu-
late the change in path length from their
transmitter in Colorado to my station in
Arizona. The distance is about 1000 km so I
assumed the path required one ionospheric
reflection and no ground reflections. Using
this model I estimated the effective height of
the ionosphere over time as follows.

The velocity, v(t), at which the source of
an electromagnetic wave is moving with
respect to the receiver can be computed from
its Doppler shift as a function of time6,

0

()() f tv t c
f

D
= 	(1)

In my case, the source is not moving but the
path length is changing because the effective
reflection height is changed by insolation.
For example, if the frequency is increasing, it

means the path length is getting shorter
because the ionization layer is getting thicker
and the effective reflection height is getting
lower. Integrating velocity from time 0 to
time T lets us find the total path length
change, Dp, in this interval as,

0
0

10

() ()
T

T t

i
i

cp T f t dt
f

ct f
f

D

=

D = D

≈ D D

∫

∑
 	 (2)

This integration can be performed numer-
ically by maintaining a running sum of each
measured frequency value with respect to the
known reference frequency every Dt seconds.
To convert this path length change to a
change in height, I assumed the path simply
follows each hypotenuse of two right trian-
gles sharing a common vertical side beneath
the point of reflection as shown in Figure 5.
From this geometry we have,

2 2
2

2 2
p dh   = +   

   
 	 (3)

then from ∂h/∂p we find the change in
height for a given change in path length is
approximately

4
ph p
h

D = D 	 (4)

Combining Eqns. (2) and (4) we find the
height change as a function of time,

10

()
4

T t

i
i

tpch T f
hf

D

=

D
D = D∑ 	 (5)

I set h to the F-layer height7 of 300 km,
and d to1000 km for which p is1170 km. The
measurements were taken every Dt = 5 s, and
f0 = 5 MHz. This yields a scale factor of 292
m s per sample.

Putting it all together we have one result
over a 24-hour period shown in Figure 6.
This was measured using an active receiving
loop antenna8 connected to an RFSpace
Cloud-IQ SDR receiver (see: rfspace.com/
RFSPACE/CloudIQ.html) read with gqrx
(see: gqrx.com). and piped into SpectrumLab
running under wine all on macOS 10.13.3.
The radio was set to about 4999 kHz USB so
the WWV carrier produced an approximately
1 kHz audio tone. The GPS reference was set
to 4,999,970 Hz to produce an approximately
970 Hz audio tone. It is only the difference in
tone frequencies that matters. SpectrumLab
was programmed to find the peak of each of
these two frequencies and store the differ-
ence. These were summed with perl (see:
https://www.perl.org) and plotted with gnu-
plot (see: www.gnuplot.info). The
SpectrumLab output file was named wwv-
5-doppler.txt with three columns for the mea-
sured WWV and GPS reference audio
frequencies and the local time in UNIX for-
mat. The key gnuplot commands include:

gnuplot> set xdata time

gnuplot> set timefmt “%s”

gnuplot> set format x “%H:%M”

gnuplot> set y2tics

gnuplot “< perl -n -a -e
‘$df=$F[0]-$F[1]-30;
$h-=292*$df/1000;

print \”$F[2] $h $df\n\”;’
wwv-5-doppler.txt” using
1:3 axis x1y2

title ‘Doppler shift’, “”
using 1:2 title ‘Height
change‘ linewidth3

The height scale is only approximate but
you can see some interesting trends on this
day. The plot begins at local midnight. The
height increased a bit more until sustaining a
fairly steady maximum for much of the
remainder of the night. After an interesting
bump an hour before sunrise it dropped
quickly then leveled off during the daytime
hours. As sunset approached the height rose
again quickly. The bounce back an hour later
looks suspiciously like the mirror image of
the bump before sunrise. It looks as if the
remainder of the night may not be as high as
the previous night. These plots are easy to
make and fun to ponder. I have recorded sev-
eral days on different bands in this manner
and all contain varied and interesting charac-
teristics.

 QEX September/October 2018 7

I hope you enjoy using this variable fre-
quency generator. Feel free to contact me if
you have any questions.

Elwood Downey, WBØOEW, has been
licensed continuously with the same call sign
since 1974. He enjoys building telescope con-
trol systems and related astronomical instru-
mentation. Elwood maintains a small Amateur
Radio web page at www.clearskyinstitute.com/
ham.

Notes
1https://www.ebay.com/itm/DC-6-5-40V-To-

5V-2A-USB-Charger-DC-DC-Step-down-
Buck-Converter-Voltmeter-Module/32178
7604751?hash=item4aec092f0f:g:0CIAA
OxygPtS4cu5.

2Etherkit Si5351 breakout board with TXCO,
https://www.etherkit.com.

3Adafruit products, tutorials and software are
available at https://www.adafruit.com.

4 For details on programming the counters
see Chapter 20 in the Atmel data sheet at
www.atmel.com/Images/Atmel-42735-

8-bit-AVR-Microcontroller-ATmega328-
328P_Datasheet.pdf.

5SpectrumLab is available as a free download
at www.qsl.net/dl4yhf/spectra1.html.

6https://en.wikipedia.org/wiki/Doppler_
effect.

7This is a typical height for the F layer
responsible for HF propagation; see https://
en.wikipedia.org/wiki/Ionosphere.

8I used this amplifier: active-antenna.eu/
amplifier-kit, with two coplanar loops 1 m in
diameter with a center height of about 3 m.

