Elwood Downey, WBJOEW

8274 Sunset Ranch Loop, Tucson, AZ 85743: WBOOEW @arrl.net

Using an Arduino to
Automatically Tune an MFJ-
1788 Magnetic Loop Antenna
and Elecraft KX3 Transceiver

Here is a microprocessor controlled system that continuously monitors the transmit
frequency of an Elecraft KX3 transceiver (or similar radio) and automatically
keeps an MFJ-1788 magnetic loop antenna in proper tune without any operator

I enjoy using my MFJ 1788 Magnetic
Loop Antenna and Elecraft KX3 transceiver
together." 2 I appreciate the effort MFJ put
into their loop controller and think it is a
clever and effective design. Because the loop
has a very narrow bandwidth, however, 1
find it awkward and distracting to frequently
retune after even a small frequency change.
I was aware that other antennas, such as the
SteppIR, connect to the KX3 to monitor the
operating frequency and retune automati-
cally as necessary, and I wanted to have the
same convenience with my loop.

My goal was to design a new controller
for the MFJ-1788 Magnetic Loop Antenna.
I wanted to be able to operate my Elecraft
KX3 in the normal manner, but if I tuned
beyond the bandwidth of the antenna, I
wanted the controller system to temporarily
reroute the RF in order to measure return
loss while rotating the antenna capacitor for
a proper match, then return the RF path back
to the radio to resume normal operation. No
operator action should be required while this
tuning was under way. No modifications
whatsoever should be required to either the
KX3 or the MFJ-1788.

Another motivation was to find a way

"Notes appear on page 12

interaction with the antenna.

to tune without transmitting. I was wary of
using even low power during the tuning pro-
cess, because that can take many seconds,
and gave me concerns about the stress this
might be causing my rig. Plus, since the tun-
ing process is performed so often, it creates
QRM, which I prefer to avoid. If I could tune
without transmitting, it would work over the
full range of the antenna, not just in the ham
bands.

This article describes a solution that meets
both challenges. I first discuss the design pro-
cess I went through, then the build process,
and then describe how to operate the device. I
will close the article with some observations.
I hope that there is enough detail included
so you can understand the design principles
involved but also so you can adapt the design
to your own situation.

Disclaimer: While I am happy to share
what I have done and will be glad to dis-
cuss the project with anyone, if you try this
yourself and break anything, including your
antenna, your rig or yourself, you do so
entirely at your own risk and I am not respon-
sible. The design presented here is specifi-
cally for the MFJ-1788 and the Elecraft KX3,
and has only been tested on my particular
units. It may well be that it can be adapted to
other similar equipment or even other uses

entirely and you are welcome to do so, but
all such uses are the sole responsibility of the
user. Okay, back to the fun.

The Design

I will begin by going over the process
I went through to design the new antenna
controller.

Requirements

Any design should begin with a list of
requirements. My list of detailed require-
ments boil down to the following items.

1) Be able to monitor the KX3 ACC1
serial communication to read the radio trans-
mit frequency in a manner that is transpar-
ent to, and thus does not interfere with, its
normal usage as a connection to a computer
or KXPA100 amplifier. This implies that T
wanted the connection to be entirely passive
without the need for any polling from the
new controller.

2) Be able to tune the antenna without
transmitting with the KX3.

3) Use pulse width modulation (PWM)
to control the speed and direction of the DC
motor that turns the antenna loop capacitor.

4) Be able to sense the antenna motor end-
of-travel in case no peak is found in a given
direction.

QEX November/December 2015 3

Loop
Antenna
TX & RX
Coax KX3 |- ACC1
Switch
. | Computer
Bias T 0);* | (not required)
A A
//'___ _________________________________ \\

/ \

: Fox |

| Delta :

! I

I

| A pos |

! I

! I

: I

| Up] Match :

: Down Limit :

: H Bridge |- - Arduino - TX Only
! |

\

\\\ ///

Floating +
12VDC -

ST
RRK gt

L Slew Step
Up Down Limit Com Up Down Tune
OK \ H(_J
Y - X Speeds
Switches
LED's

QX1511-Downey01

Figure 1 —This combination block diagram and simplified schematic diagram shows the
basic construction of the automatic antenna controller.

5) Provide several switches and potenti-
ometers for operator inputs.

6) Provide several status LEDs to keep the
operator informed of state information.

7) Include sufficient computing power
to monitor the radio frequency on a timely
basis, decide when it is necessary to retune,
and control the motor to find a peak within
several seconds from the start of the search.

8) Include a provision for a coaxial relay
to automatically switch the antenna to the
tuning controller while searching, and back
to the radio when completed without opera-
tor intervention.

9) Make no changes whatsoever to either
the radio or the antenna so they can be
returned to service at any time in their origi-
nal condition.

Before arriving at these requirements,
I explored other approaches. I settled on
searching for maximum return loss but I also
tried searching for maximum receive noise.

4 QEX November/December 2015

This uses much less hardware: no RF genera-
tor, bridge or detector; just send the audio to
an ADC, but I was never satisfied. It worked
very well when in the clear but the main chal-
lenge was making it work in the presence of a
signal. My best approach was to use an FFT
and use only those frequencies with minimal
strength (to measure only the noise and avoid
the wildly varying modulation content). I
got pretty close but, again, was never satis-
fied. I still think it would be cool if it worked
though. I also tried using the SWR meter
built into the KX3. The main problem with
that is, it’s not very repeatable so there were
many false nulls.

Choice of Microprocessor
After researching the available options,
I settled on an Arduino Uno for the main
processor. It is inexpensive, has a rich eco-
system of development tools and supporting
information, and is rapidly gaining traction

as a preferred platform in Amateur Radio
circles. It comes well equipped to address
all the requirements listed above with some
additional hardware. Figure 1 shows a com-
bination block diagram/simplified schematic
diagram of the system.

I wrote the software, called “sketches” in
Arduino parlance, in small steps to under-
stand each requirement separately. The tools
and techniques for doing so are covered well
elsewhere and will not be repeated here.?

Monitoring the KX3 Frequency

The new tuner needs to constantly moni-
tor the KX3 frequency coming from its
ACCI1 connection. I dug into both the KX3
and Uno schematics to see how I could lis-
ten to this line without interfering with its
normal use with a computer. Once I realized
that the polarity between the two units was
opposite (the KX3 uses RS232 with mark
High whereas the Arduino uses TTL with
mark Low) it was a simple matter to wire up
a transistor to serve as both an isolation buf-
fer and level inverter (Q6 in the schematic).

In order to share the serial connection for
use with the Arduino IDE Serial Monitor at
the same time as it listens to the KX3, you
must set the IDE to 38400 baud to match the
radio. Note that this speed for the Arduino
Serial Monitor only became available start-
ing with IDE Version 1.6.1.*

After more study of the Arduino (really
the Atmel) serial port function and the KX3
Programmers Manual for the command syn-
tax, I had code running that reliably recog-
nized and extracted the operating frequency
as I turned the main knob or changed bands
on the KX3.

Note that I decided not to use the Arduino
Serial class because I wanted a fully inter-
rupt-driver serial mechanism that could
effectively run simultaneously “in the back-
ground”” while my main loop was controlling
everything and also because I did not want to
poll the radio and worry that any latency in
my main loop would risk missing characters.
The results are a little more complex, but
functionally it is the same, and works fine
with the IDE Serial Monitor.

Finally on this topic, with factory default
settings, the KX3 only reports its frequency
to the ACC1 port when polled but this was
counter to my requirement of a non-invasive
read-only connection. It turns out that there
is an option called AUTO INF in the KX3
menu system, which can be set to ANT
CTRL to create exactly the desired behav-
ior — clearly the folks at Elecraft antici-
pated this use. With this setting, any time
the operator changes frequency or switches
bands the KX3 automatically sends a new
frequency report within a second or so,
even when not connected to a computer. If
you have your KX3 connected to computer

software. that gets confused with these unso-
licited responses, however, it is pretty safe to
assume said software is surely doing its own
polling so turn off this menu setting, let the
software do its own polling and everything
should still work fine.

Controlling the Antenna Motor Speed

The next requirement I tackled was con-
trolling the loop motor. I was familiar with
the idea of pulse width modulation, whereby
the effective power of a digital signal is
controlled by changing the fraction of time
during which it remains at a logic High level
while maintaining a constant frequency, oth-
erwise known as changing its duty cycle. So
that was a simple means to control the speed,
but I also needed a way to change direction.
After more study, I found this is normally
done by an H Bridge. This is a classic circuit
that connects the two wires from a DC motor
with four SPST switches, arranged in such a
way that the proper combination of switch
states can connect either side of the motor
to power or ground potential, thus providing
a means to change the polarity of the motor
and thus its direction of rotation. This tech-
nique is so common, in fact, that dedicated
ICs are available to perform this function
with just a few parts. I did not have such an
IC, but I had enough parts in my junk box to
fabricate an H Bridge from first principles. I
built up a circuit and my next trial sketch con-
vinced me I could control both motor speed
and direction using two PWM outputs from
the Arduino.

Detecting End-of-Travel

The next requirement was to detect the
end of travel. Although in principle the
capacitor mechanism in the MFJ-1788 con-
troller could rotate endlessly without doing
any harm, it is only allowed to rotate one half
revolution. I can imagine this design deci-
sion was made because the other half rota-
tion does not really provide any new values
of capacitance, and because the net capaci-
tance would first increase and then decrease
while the motor continues to turn in one
direction, which would be quite confusing to
any tuning algorithm. The rotation limits are
implemented as two physical switches and
diodes inside the antenna module. A given
switch opens when motion in a given direc-
tion reaches its end of travel and yet the diode
allows current to flow in the opposite direc-
tion even with the switch open.

The MFJ-1788 makes use of a bias-T to
provide motor power through the same coax
as the RE. This is a clever way to eliminate
an extra control cable, but it also means the
state of these limit switches is not directly
available to the control end of the system.
Fortunately, the only function these switches
effectively perform is to interrupt the path

TN, QX1511-Downey02

/
! 5VDC |
RF Fox Delta - I
BNC | ‘|
E Ahhd ':
! ! Station
i Buck |== T 2imm 138 VDG
! |
| 1 |
KX3 TX] Arduino - :
Com Stereo | 5VDC !
I
[! |
| |
! |
! I
! |
1 I
! \ }] \I
‘ | Coax
Bias-T { H Bridge ‘: Phono Relay
DC In | and !
! coax relay driver - : 12VDC
! } Phono Battery

Figure 2 —This is a more detailed block diagram of the antenna tuner.

of current to the motor. Thus, the activation
of a limit switch can be detected by simply
monitoring the current to the motor and not-
ing if it drops to zero. I did this by using a
pair of optoisolators, a pair being required
in order to allow for both polarities sent to
the motor for direction control. Although it
is true this technique does not directly pro-
vide the means to know which limit switch
was activated, this can be reliably inferred
by knowing which way the motor is being
commanded to move when the current stops.

This method of detecting a travel limit
comes with one caveat, however. Using
PWM means that the current is intentionally
brought down to zero during each cycle. So
a means was needed for this frequent occur-
rence of zero current to not cause a false indi-
cation of a limit. The solution turned out to be
as simple as adding a timer to the limit detec-
tion algorithm. Although the instantaneous
current detector circuit still reports no current
during each PWM cycle, a logical limit is
not reported unless the condition persists for
some small length of time.

Operator Inputs

In this application, the requirement to pro-
vide operator command inputs is sufficiently
simple as to be met with some small momen-
tary contact push button switches. I ended up
using three.

1) Tap to force an automatic search to
commence, if desired.

2) Hold to manually rotate lower in fre-
quency, release to stop.

3) Hold to manually rotate higher in fre-
quency, release to stop.

There are other combinations of switch
inputs for lesser used functions, which will
be described later. Each switch is connected
directly between a digital input and ground,
and the Arduino is programmed to provide
an internal pullup resistor to the positive sup-
ply rail, a handy feature that saves a resistor
for each switch. Note that in the code, the
logic is inverted, such that a High denotes the

- switch is idle and a Low denotes the switch

is being pressed.

n addition, there are two analog values
that must be set based upon your particular
antenna characteristics. Even with my single
unit, I find it necessary to adjust these when-
ever the weather, temperature, or humidity
changes appreciably, probably because of
their effect on the motor lubrication and
friction in the simple journal bearings. The
operator adjusts these by turning two poten-
tiometers. One is called Slew, which sets the
fast slewing rate. The other is called Step,
which sets the fine stepping pulse duration
time. These will be explained more fully later
when we discuss the tuning algorithm. These
potentiometers also have specialized applica-
tions as explained later.

LED State Indicators
I decided that controller state information
can be communicated clearly enough using
four colored LEDs. At times during develop-
ment I found it handy to connect an 8 charac-
ter 8 x 8 LED matrix array controlled using

QEX November/December 2015 B

P1 P2

o] [of
End-Of-Travel
Q1 Detect
R3 U1 R1 2N3904 g
560 22k
1 8 1 D1 u3
Down ¢ My My A ina1ss 1 8
Y=
2 7 v — (
+
— . R5 2 -4 — 7 '
= Floating
Vi = 12vpC 560 3 6 Qs
- AAA R6 2N3906
yvyy 3 6
y Y 22k
) 4 - 5 4 D3 .
Up (1N4148 4 = 5
MCT6
r MCT6 rnr
P5 P6
fo] [
P7 P8
NO R13
FOXABNC {——— I O I 47k
; _ v D5 Q5
Bias-T ()__E - ¥ 1N4001 TIP120
NC = I O | I @—_
KX3 Antenna a——
P9 P10
Coax Relay
P12
uUe I~ +5V* .
5 VDC Buck oD
Station 13.8V 5V
13.8 VDC o IN ouT
P10 GND
o ” 4 pons
P13
MPIO 11
MPIO 13
FoxA PIC * Disconnect when using the Arduino USB
PIC 2 AD8307 | O
PIC 23 DDS Reset { O
PIC 22 DDS Strobe | O
PIC 21 DDS Clock |Or
PIC 18 DDS Data | O
P15 Ig‘_‘T
‘ Ring %
3 P16 @—— NIC
Tip Figure 3— This is the complete schematic diagram for the

automatic antenna controller.

P17 @—nL
Sleeve

6 QEX November/December 2015

Q2
2N3904 R2 u2
2.2k 8 1
D2 =+ AAA)
1Na128 B Wy _ { up
7 — T |2
P3 P4 AN J(Down
@_®_@ @ Q4 R4
2N3906 Ry 6 3 560
Motor via Bias—T B
2.2k -— “
D4 -4 5 - 4
1Na1a8 A —MWNV—
R8
MCT6 560
us
5V GND b
GND 13
12 —() End-Of-Travel Detect
R16 R15 . R
20 k 20 k — 3.3V 11 1 Down
IORef *10] Up
< < — RESET *9
D N I i ;
r7 -7 — VIN 7
*6
A0 *5
A1 4 S RO R10 R11 ¢ R12
> >
A2 *3 < 560 560 560 1 560
A3 2 CK
1 2 S D D D
Ad ik s S 3 \DG N 7 N 8 N 9
Arduino Uno Manual Manual Auto COM Motor Going Going
Down Up Tune OK Limit Down Up
(Green) (Red) (Yellow) (Blue)
R14
10k
AAA » QG . .
vy D10 2N3904 Except as indicated, decimal values of
1N4148 capacitance are in microfarads (UF);

others are in picofarads (pF); resistances
are in ohms; k = 1,000, M = 1,000,000.

QX1511-Downey03

QEX November/December 2015 7

the SCI bus, but this is not needed for the final
system. Each LED is connected to a digital
output pin with a series resistor to ground.
I chose to define the four LEDs as follows:

¢ Light a red LED while a logical end-of-
travel limit is being detected.

o Light a yellow LED to indicate that the
antenna is moving down in frequency.

¢ Light a blue LED to indicate that the
antenna is moving up in frequency.

¢ Blink a green LED when communica-
tion with the KX3 has reliably determined
the operating frequency.

As with the switches, other LED combi-
nations are used for lesser used functions, as
described later.

Measuring the Antenna Match

The final piece of the puzzle is to find
a way to measure the degree of impedance
match of the antenna. 1 considered many
approaches but finally settled on using a bal-
anced bridge circuit to sense when the mag-
nitude of the input impedance of the antenna
connector was near 50 Q. The idea is to con-
nect three 50 Q) resistors into a square, with
the antenna connect in the place of the fourth
resistor. Then connect a signal generator to
drive two opposite corners with a reference
frequency, and measure the voltage across
the two remaining corners. The lower the
measured signal across the bridge, the bet-
ter the antenna impedance agrees with the
surrounding resistor values. Such a bridge

0 AR TR

\ WBOOEW

does not provide the sign of the reactance
when not matched, but we can infer that in
other ways.

With this design in mind, it remains to
choose a signal source and a detector. It turns
out there are two ICs from Analog Devices
that serve both these goals admirably. The
AD8307 log amp is an excellent detector and
the AD9851 Direct Digital Synthesizer is a
flexible RF signal source.>® These parts have
been RF work horses for some time so the
only real decision was how best to proceed
with an implementation around them.

A little searching on the Internet finds lots
of schematics and tips for using these parts in
similar applications. Being an experimenter,
I was tempted to start with bare parts and
work up my own solution, but then I found a
commercial implementation that was just too
good to ignore. The FoxDelta AAZ-0914A
Antenna Analyzer provides a complete kit
for exactly this purpose.” For about $50,
there was no way I could match this with my
own parts and time. All you do is connect the
antenna, 5 V DC, a few wires to control the
chips and the Arduino has an easy time of
measuring the degree of mismatch anywhere
in the frequency range of the antenna.

Note that the FoxDelta unit includes a
PIC processor to provide a nice USB inter-
face to a host computer. Rather than work
through an intermediate control layer, how-
ever, I decided to unplug the PIC and attach

leads directly from each control chip to
some Arduino IO pins. This allowed me to
control the Analog Devices chips exactly as
I wanted, and also makes the software inde-
pendent of the AAZ-0914A and thus entirely
suitable for others who might want to use a
different implementation using these chips.

Tuning Algorithm

Now that we can read the radio frequency,
control the motor, interact with the operator,
and measure the degree of tuning match it’s
time to consider the heart of the matter: the
automatic tuning algorithm. This involved
a large amount of experimenting and care-
fully observing how the motor reacts to com-
mands. I'll spare you all the false starts but
one lesson stands out of paramount impor-
tance: there is a large amount of backlash
in the drive train and it is not particularly
consistent with direction, speed or position.
The MFJ design includes a spring that prob-
ably reduces this to some extent, but the very
low power motor precludes it from providing
much in the way of compensating force, and
thus its effectiveness is marginal at best.

Dealing with the backlash becomes the
primary challenge. The tuning technique I
finally settled on is explained in the follow-
ing steps.

1) Keep comparing the radio frequency
with the last known antenna tuning fre-
quency. Using an estimate of the antenna Q
(which can be easily adjusted in the source

Figure 4 —Here is a photo of the controller front panel. You can see the SLEW and STEP potentiometers, the TUNE, DOWN and UP

pushbutton switches and the various indicator LEDs.

Figure 5 —This photo shows the controller rear panel. The various input and output connections are shown.

8 QEX November/December 2015

"

an

I
<
@
N
<
5
pir}
@
a
x
. O
I

Figure 6 — Here is a photo of the wiring inside the controller cabinet.You can see the Fox Delta Antenna Analyzer boards, the Arduino board
and the construction of the rest of the circuit on several perf boards.

code if desired), determine when the two
values differ by an amount that is worth
correcting. The code takes into account that
the useful bandwidth of the loop antenna
is smaller at lower frequencies. When the
two values are sufficiently far apart, decide
which way the motor needs to rotate and go
to Step 2.

2) Begin by slewing full speed in the
opposite direction for a short while. Yes, you
read that right. By going a goodly ways in
the wrong direction first, we are assured of
always passing through the best match posi-
tion at full speed, even if it is very close to
the starting position. I tried many techniques
to approach more slowly but this turned out
to be by far the most reliable. After this brief
burst, stop, slew at full speed in the other
(correct) direction and go to Step 3. It is the
SLEW POTENTIOMETER that defines this fast
rate of motor rotation.

3) While going full speed toward the
desired match position, measure the match

as quickly as possible. Given that the match
can be read very rapidly, we are assured of
a steep and deep dip as we pass through the
best match value. As we are performing this
search, record the best match value seen so
far, to be used later. When the dip is detected,
stop the motor. Another benefit of always
slewing rapidly through the best match posi-
tion is that we can be assured the motor has
definitely overshot the best position. If we
had approached more slowly, we may or
may not have passed the best position and so
we really would not have learned very much
about our target. Now that we know for sure
we are stopped just past the best position, go
to Step 4.

4) Now the fun begins. We make very
small steps and measure the match after mak-
ing sure the motor has come to a complete
stop after each step. The duration that power
is applied for each step is controlled by the
STEP POTENTIOMETER. It took me days to
realize that when power is removed from the

motor the capacitor can continue to change
aimlessly, even though I had inspected the
coupling bushing in the antenna to insure
that it is tight. Measuring the antenna match
during these uncertain motions is at best
meaningless and at worst just adds to the con-
fusion. So, during this procedure, after power
is removed for each step, the match is mea-
sured repeatedly until it no longer changes.
Only then do we believe the motor and
capacitor have really stopped moving, and
the measurement is meaningful. By insur-
ing a full stop, each of these final measure-
ments are reliable, and we can repeat making
small steps looking for the next dip. Step 5
describes exactly what we are looking for.

5) Unlike the dip seen while performing
the initial fast slew, in this phase we must
minimize the degree of overshoot through
the best match condition. This is because
since we cannot actually measure position,
there is no way to go back to a known posi-
tion in a reliable fashion. Thus we need a way

QEX November/December 2015 9

to detect that we are just barely past the best
match position. To do this, as we make each
(stopped) measurement, we look for a match
reading that is better than the best reading
found during the slew in Step 3, followed by
a larger value. This strongly suggests we are
exactly one step past the best match position.
We could stop here and be pretty close, but
we go on to Step 6.

6) To review the work up to this point, we
slewed rapidly enough through best match
to insure overshoot and we recorded the best
value seen during that run. We have turned
around and found that same match again but
going much more slowly, so we know we are
close. What we do now is basically repeat
step 5 but at half the step time. We keep doing
this until we are all but completely stopped.
So in summary, we walk back and forth over
the best match going more and more slowly,
the plan being that when we go so slow as to
be stopped, we should be almost exactly at
the best match position.

All the while this is going on, we also
watch for the capacitor end-of-travel, in
which case we turn around and start over. We
also watch for the operator to tap any of the
switches, in which case we abort the tuning
attempt and stop where we are.

The Build

Now that I had a design and major imple-
mentation details worked out, it was time to
build it. By the time I had everything work-
ing, my bench was pretty much covered with
several breadboards and a large number of
wires running everywhere, but I love this
stuff so that was a feature of the project, not
a bug!

Construction

For the following, it is helpful to refer to
the schematic diagram, shown in Figure 3.

Many of my component choices and
implementation decisions were based stmply
on using suitable parts that I had on hand
as much as possible, even if perhaps there
are simpler choices. Looking at the final
schematic, you might guess correctly that 1
had a large number of 2N3904 and 2N3906
transistors, 1N4148 diodes and MCT6 dual
optocouplers, so naturally that’s what I used.
These transistors are rated for only about
200 mA collector current but, remarkably,
the MFJ motor draws only about 10 mA,
so even these small signal parts work fine in
what otherwise would require larger current
devices. Even the LEDs in the optocoupler
used as a current sense can handle 60 mA of
continuous current. I measured about 40 V
of back EMF, so the 60 V maximum reverse
voltage of the 1N4148 used here as clamping
diodes is also adequate, but feel free to use
what you prefer.

The most obvious effect of using stuff on

10 QEX November/December 2015

hard is that I made my own H Bridge from
discrete components. If you have, or want
to purchase, an H Bridge chip such as the TI
L.293D or even a complete Arduino motor
control shield, such as those available from
Adafruit or Sparkfun, by all means do so.
The big point here, however, is to take note
that the Bias-T requires that the power supply
for the antenna motor must have both sides
isolated from station ground. The reason is
that either side of this isolated supply can,
depending on the desired motor direction,
be connected to station ground. I could have
worked up an isolated supply, or just used a
commodity wall-wart, but given the remark-
ably low current draw of the motor, I just
chose to power the H Bridge with batteries
adding up to 12 V. I am still using the origi-
nal set I started with but note that if your unit
stops operating reliably, measuring the bat-
tery voltage should be a first thing to check.
Generous use of the optocouplers made easy
work of connecting the grounded Arduino to
the floating H Bridge.

Both the Arduino and the Fox Delta
require a clean supply of 5 V DC. For this, I
found an inexpensive variable buck converter
on Amazon that draws from the 13.8 V main
supply for the unit.

Two PWM outputs from the Arduino
drive the H Bridge. They turn on either Q1
and Q4, thus connecting the left and right
leads of the motor to positive and negative
supply, respectively, or Q2 and Q3, which
provides the opposite polarity to the motor.
The motor is off when all four drivers are
open. Note that the supply would be shorted
if both left or both right drivers were on at the
same time, but the logic of the optocoupler
wiring, Ul and U2, makes this impossible,
thankfully making the design immune at
least from this programming error.

Rather than build my own Bias-T, I
just purchased the MFJ-4116.8 I figured
since they use the same design within their
antenna, their separate product would prob-
ably be compatible, and that proved to be the
case. Doing so certainly saved some effort
and perhaps a little money. My only regret
is the poor quality SO-239 connectors they
used.

The motion limit sensor uses another pair
of optocouplers in U3, wired to connect one
Arduino digital input to ground while there
is current in either direction, causing the
Arduino to read a Low. If there is no current,
the coupler outputs will both be open and
the Arduino will read a High logic value. As
described above, a little extra care is required
in the software because the current is also
zero in between PWM pulses.

Several 1O lines connect to the Fox Delta
unit. I did this by carefully removing the
original PIC (and packing it for safe keeping

if T ever want to use it again) and replacing it
with two header strips. I then plugged male
breadboard jumper wires into the female
header positions. I found it best to lean the
two headers toward each other so their tops
touch and add a bead of super glue along
this junction to form a sort of roof over the
socket. I tried using another 28 pin socket as
a plug. Although the pins lined up, of course,
the body shape was such that it did not firmly
seat into the original socket. I also tried to
quickly solder wires to this second socket
but the plastic melted before anything else.
I am open to better ideas that still allow me
to replace the original FoxDelta PIC if T ever
choose to do so. The digital connections to
the AD9851 DDS can probably tolerate a
little contact resistance but the analog con-
nection to the AD8307 must be as clean and
stable over time as possible. I open my case
occasionally and pull out this lead and push it
back in a few times and then redo the calibra-
tion step to insure best possible performance.

During my experiments, [could see it was
going to be important to adjust the Slew and
Step rates carefully and adjust them from
time to time. Rather than require changing
constants in the program to accommodate
this, I added two potentiometers to the
design, R15 and R16. Suggestions for setting
these properly will be discussed later. Figure
4 is a photo of the front panel of my control-
ler. Figure 5 shows the rear panel. Figure 6
shows the wiring inside the cabinet.

The coax relay is not absolutely required
for this project but it really makes the control-
ler completely hands-off to operate. There
are lots of options here, and several always
seem to be available in the used marketplace.
The only requirement is that you can find a
way to control it with a digital output pin on
the Arduino, such that a High switches the
antenna to the controller, and a Low switches
it back to the radio. The relay I found draws
about 100 mA at 13.8 V DC, and generated
120 V of back EMF. See the circuitry sur-
rounding Q5 for my solution.

Checkout

First, a few notes of caution.

1) Never power the Arduino from the
separate 5 'V supply and the USB at the same
time. One or the other supply will inevita-
bly be higher, causing current to flow in the
reverse direction of the other supply.

2) Although the auto tuner will work fine
capturing serial commands from the radio to
the computer, you must disconnect the radio
connection temporarily while programming
the Arduino.

For the following, I will assume you have
flashed the sample code in your Arduino with
the USB connection, built the circuit as per
the schematic and connected 5 V to only the
Fox Delta. My sample Arduino code is avail-

able for download from the ARRL QFX files
web page.’ At this point you can connect the
antenna Bias-T but do not connect the motor
to 12 V.

Upon power up, you will first see all four
LEDs light up for a second. This is homage
to the tradition of testing all lamps. Then
you will see the green COMOK LED slowly
flashing. It will remain flashing like this
until receipt of the first successful frequency
report from the KX3. Ignore it for now.

Hold the DOWN switch for a few seconds
and release. The yellow DOWN LED should
come on immediately then the red LIMIT LED
should come on after a second or so because
there is no current to the motor. With an oscil-
loscope probe on Arduino pin 11 and hold-
ing the DOWN switch, you should see a5 V
square wave with a frequency of 490 Hz, and
a duty cycle that varies from 0 to 100% as
the SLEW potentiometer is adjusted. Repeat
this action with the UP switch, except the
blue UP LED should come on. Measure the
waveform at pin 10.

Now connect 12 V to the H bridge.
Repeat the above tests, and measure the high
side of the motor connection. It will be simi-
lar but it will be a higher voltage and more
triangular, reflecting a large time constant
because of the motor inductance.

If this works, move on to the KX3 com-
munications. Connect the Ring from the
KX3 ACCI connection to the controller
Ring connection point (P15) and the sleeve
to ground (P17). The tip is not used. My KX3
is normally connected to a computer while
in the shack, so I inserted a stereo “Y” con-
nector to gain access to this signal. Power up
the KX3 and check that menu entry AUTO
INF is set to ANT CTRL. A slight turn of
the main radio knob should cause the green
COMOK LED to blink, indicating a valid fre-
quency report was captured.

Calibration

Connect the antenna through the coax
relay and the Bias-T. Hold the DOWN switch
until the red LIMIT LED comes on. Set the
SLEW potentiometer to mid range. Note the
time and hold the UP switch. The LIMIT LED
will go out then come again many seconds
later, after the motor has rotated from one
limit to the next. You want to set the SLEW
potentiometer so this total travel time is
about 20 seconds. Going down is always a
few percent faster than going up because the
anti-backlash spring is aiding the motor, but
the difference is not enough to worry about.

The next step is to calibrate the mismatch
value. Remove the antenna connection from
the Fox Delta BNC connector. While press-
ing the TUNE switch, tap the Arduino RESET
switch. After a few seconds you will see a
steady rolling pattern across all the LEDs.
Release the TUNE switch and the pattern

should reverse and go somewhat faster.
After a few seconds the LEDs go out. This
indicates you have successfully calibrated
the open circuit mismatch value. Using the
Arduino IDE Serial Monitor during this
procedure, you will see each measured value
reported and the final computed value of
BAD_MATCH. On my configuration, the
value is near 400 or a little lower. It is a good
idea to perform the procedure a few times
and confirm it repeats to within a few percent.
If the value varies a lot, you probably have a
poor connection to the Fox Delta PIC socket,
pin 2. The value is stored in EEPROM so it
will remain during Arduino power cycles and
resets. If for some reason the EEPROM fails
to confirm the new value, you will see error
code two be reported and you should retry
the procedure. If the EEPROM continues to
fail, you have a bad Atmel chip and should
replace it.

Now to set the STEP potentiometer. This
is a little trickier. Too high and it will skip
past the best match and continue to the limit
in that direction. Too low and it will take a
long time to find the best match. After the
fast slewing step, you want it to find the first
best match candidate in 5 to 10 seconds, turn
around, and find it again in 3 to 5 seconds
then finally settle on the best position in
another few seconds. During this procedure,
you will see the yellow and blue LEDs alter-
nate as the algorithm hunts either side of the
best match.

The best way to set the STEP potentiom-
eter is to use the IDE Serial Monitor to watch
the printed report. Tap the TUNE switch. On
the Serial Monitor you will see two lines
that begin with Slewing followed by several
lines that begin with Stepping. The Slewing
lines are reporting each reading during the
initial fast scan. Smaller numbers are bet-
ter matches. As soon as a significant dip is
found, the values that qualified as a dip are
reported. The center few of these should
be well below the value of BAD_MATCH
found during calibration. The Stepping lines
report the finer moves up and down, hunting
for the best match.

Operation

After completing the checkout and cali-
bration, you should have a very good idea
how to use the tuner.

1) Power up everything.

2) Change the rig frequency to get the first
frequency report, as indicated by a COMOK
LED blink. The tuner will never attempt to
move the antenna before the first successful
rig report. Automatic tuning is not enabled
until the TUNE switch is used at least one
time.

3) Tune around as desired. You will see the
COMOK LED blink each time the rig reports a

frequency. Auto tuning will never commence
as long you are changing frequency. At some
point, stop changing frequency. If you have
moved sufficiently far away from the last
time the antenna was tuned, a search will
commence automatically. If the antenna has
never been matched since power up, the tuner
will start in a random direction but is smart
enough to turn around at the end-of-travel if
it guessed wrong.

4) Automatic tuning can be interrupted
for any reason at any time by tapping any
switch. After doing so, automatic tuning will
be disabled until you tap the TUNE switch
again.

5) If the fast slewing step fails to stop, and
bounces off both limits, try redoing the cali-
bration of the BAD_MATCH value. Also,
make sure there is a good connection with the
Fox Delta PIC pin 2.

6) If the slower fine stepping phase of the
search goes on too long, longer than, say,
30 seconds, tap the TUNE switch to stop the
algorithm. Now listen to the audio from the
radio and press the same UP or DOWN switch
that matches the LED motion that was flash-
ing. Hold the switch for a few seconds and
release. If you hear a brief increase in the
audio level, you know the match was not
yet encountered and you should increase the
STEP potentiometer a little. If you can hold
the UP or DOWN switch a long time and never
hear the audio level increase, you know the
step jumped over the best match, so decrease
the STEP potentiometer a little.

Error Codes

If the tuner encounters an error during
operation, it flashes all LEDs a certain num-
ber of times to give a clue to the problem. The
error code is repeated four times. The codes
are as follows.

1) The transmitter is on when a tune
attempt was requested.

2) The EEPROM failed to verify the writ-
ten value.

3) Radio frequency is still unknown when
a tune attempt was requested. :

4) Radio frequency is too low: for the
antenna.

5) Radio frequency is too high for the
antenna.

A Few Surprises

There are a few more features available,
which you may find useful.

1) Zero Beat. During the Tune procedure
the DDS frequency may not exactly match
the radio frequency, which can cause an
annoying heterodyne if there is any leakage
through the coax relay from the DDS to the
radio. To eliminate this you can calibrate the
DDS to zero beat with the radio as follows:

1.1.1.) While holding the UP switch, tap
the ARDUINO RESET. After a few seconds

QEX November/December 2015 11

you will see the green COMOK LED flashing.
Spin the radio knob a little to force it to report
the frequency. When a frequency report has
been received successfully, the COMOK LED
will go out and the blue UP LED will flash. At
this point, adjust the STEP potentiometer up
and down and confirm you can hear the DDS
heterodyne. Tune for zero beat and, finally,
release the UP switch. The offset is stored in
EEPROM, so it will remain effective across
Arduino power cycles and resets until the
procedure is repeated.

1.1.2.) Note that this only provides one
zero beat setting. It can be set to work with
USB/LSB or CW but not both, because of the
sidetone offset employed for CW.

2) Frequency Generator: The FoxDelta
can still be used as a general purpose fre-
quency generator. To enter this mode, tap
both UP and DOWN switches at the same time.
When successful, both UP and DOWN LEDs
will light at the same time. Now the SLEW
potentiometer is a coarse frequency control
and the STEP potentiometer is a fine control.
The resolution is about 15 Hz. The coax relay
will connect the antenna to the FoxDelta dur-
ing this mode, but of course you can ignore
that and connect anything you want directly
to the FoxDelta. The frequency is reported in
the Serial Monitor if you have that visible.
Exit this mode by tapping any switch.

3.) Frequency Sweep: Hold the UP
switch and tap the TUNE switch to start a
sweep over the entire auto tuner range. The
red LMIT LED will flash while the sweep is
in progress. A table of frequency and mis-
match values is printed in the Serial Monitor
window. During the sweep the antenna is

12 QEX November/December 2015

switched to the FoxDelta. The sweep is fin-
ished when the red LIMIT LED stops flashing.
The sweep can be aborted at any time by tap-
ping any switch.

Conclusion

I have enjoyed using the loop tuner for
several months, and find it meets all the
requirements quite well. Once in a while it
will miss a match, but I just tap the TUNE
switch and it recovers shortly.

Finding a match after a band change
typically takes 30 to 40 seconds, tweaking
up after a modest QSY takes 10 to 20 sec-
onds. Perhaps I could beat these times a little
by hand, but now there’s no more remem-
bering to first adjust power level; pressing
Tune on the radio; jockeying several lights
and switches; manually dealing with end-
of-travel; adjusting for overshoot; fighting
the temptation to tweak it just a little better;
fretting over my finals; or causing QRM to a
QSO. Now I just ignore the antenna. [tune
the radio around at will, and when I find
something I want to listen to I stop. If it is far
enough away from the last tuning frequency
to matter, the antenna is tweaked for the new
frequency in a short while and I'm good to go
with no effort at all. It feels almost as though
I have a nice broadband antenna. How cool
is that?

Elwood Downey, WBOOEW, has held the
same call sign since he was first licensed in
1974. He is an ARRL Member. Elwood enjoys
software, digital modes, antennas, and experi-
menting. He graduated with a BSEE cum laude
in 1977 from Purdue University. Since then

he has focused his career on telescope control
systems and related astronomical instrumenta-
tion, which he finds very fulfilling. It has taken
him to many of the great observatories around
the world.

Notes

1For information about the MFJ-1788
Magnetic Loop Antenna, go to the MFJ
website: www.mfjenterprises.com/
Product.php?productid=MFJ-1788.

2For more information about the Elecraft
KX3 transceiver, go to the Elecraft website:
www.elecraft.com/KX3/kx3.htm.

3Glen Popiel, KW5GP, Ardunio for Ham
Radio, ARRL, 2014, ISBN: 978-1-62595-
016-1, ARRL Order No. 0161, $34.95.
ARRL publications are available from
your local ARRL dealer or from the ARRL
Bookstore. Telephone toll free in the US:
888-277-5289, or call 860-594-0355, fax
860-594-0303; www.arrl.org/shop; pub-
sales@arrl.org.

“The Arduino software is available from:
hitps://arduino.cc/en/Main/Software.

sDownload theAD8307 log amp data sheet
from: www.analog.com/media/en/
technical-documentation/data-sheets/
AD8307.pdf.

sDownload theAD9805 direct digital syth-
esizer data sheet from: www.analog.com/
media/en/technical-documentation/data-
sheets/AD9851.pdf.

7For more information about the Fox Delta
Antenna Analyzer, go to: www.foxdelta.
com/products/aaz-0914a.htm.

8See the MFJ website for more informa-
tion about the MFJ Bias-T: www.
mfjenterprises.com/Product.
php?productid=MFJ-4116.

9The author’s Arduino code is available for
download from the ARRL QEX files web
page. Go to www.arrl.org/gexfiles and look
for the file 11X15_Downey.zip.

]

